The citation graph is essential for generating high-quality summaries of scientific papers, in which references of a scientific paper and their correlations provide extra knowledge for understanding its background and main contributions. Despite the promising role of the citation graph, effectively incorporating it still remains a big challenge, given the difficulty of accurately identifying and leveraging relevant contents in references for a source paper, as well as modelling their correlations of different intensities. Existing methods either ignore or utilize only abstracts indiscriminately from references, failing to tackle the challenge mentioned above. To fill the gap, we propose a novel citation-aware scientific paper summarization framework based on the citation graph, with the ability to accurately locate and incorporate the salient contents from references, as well as capture varying relevance between source papers and their references. Specifically, we first build a domain-specific dataset PubMedCite with about 192K biomedical scientific papers and a large citation graph preserving 917K citation relationships between them. It is characterized by preserving the salient contents extracted from full texts of references, and the weighted correlation between the salient contents of references and the source paper. Based on it, we design a self-supervised citation-aware summarization framework (CitationSum) with graph contrastive learning, which boosts the summarization generation by efficiently fusing the salient information in references with source paper contents under the guidance of their correlations. Experimental results show that our model outperforms the state-of-the-art methods, due to efficiently leveraging the information of references and citation correlations.


翻译:引用图对于编写高质量的科学论文摘要至关重要,其中科学论文及其相关性的参考文献提供了额外的知识,以了解其背景和主要贡献。尽管引用图的作用很有希望,但有效纳入该图仍然是一个巨大的挑战,因为很难准确确定和利用源文件参考文献中的相关内容,以及难以准确利用源文件参考文献中的相关内容,也难以模拟不同强度的相互关系。现有的方法要么忽视,要么只是不加区别地使用参考文献中的精选摘要,未能应对上述挑战。为了填补空白,我们提议根据引用图建立一个新的引用-有识科学论文总结框架,能够准确查找和纳入参考文献中的突出内容,并反映源文件及其参考文献之间的不同关联性。具体地说,我们首先用大约192K生物医学科学论文和大引用图来保护它们之间的917K引文关系,其特征是保留从参考文献全文中提取的突出内容,以及参考文献中突出的参考文献内容与源文件之间的加权关联性关系。基于该图中,我们设计了一个自缩缩缩缩缩的图像框架,我们用图表的缩略图,以缩缩缩图中的数据缩图,以显示其缩缩图的缩图的缩图格式,以缩图,以显示其缩图中的缩图中的缩图。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
10+阅读 · 2021年3月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员