Evaluating early design concepts is crucial as it impacts quality and cost. This process is often hindered by vague and uncertain design information. This article introduces the SysML-based Simulated-Physical Systems Modelling Language (SPSysML). It is a Domain-Specification Language for evaluating component reusability in Cyber-Physical Systems incorporating Digital Twins and other simulated parts. The proposed factors assess the design quantitatively. SPSysML uses a requirement-based system structuring method to couple simulated and physical parts with requirements. SPSysML-based systems incorporate DTs that perceive exogenous actions in the simulated world. SPSysML validation is survey- and application-based. First, we develop a robotic system for an assisted living project. We propose an SPSysML application procedure called SPSysAP that manages the considered system development by evaluating the system designs with the proposed quantitative factors. As a result of the SPSysML application, we observed an integrity improvement between the simulated and physical parts of the system. Thus, more system components are shared between the simulated and physical setups. The system was deployed on the physical robot and two simulators based on ROS and ROS2. Additionally, we share a questionnaire for SPSysML assessment. The feedback that we already received is published in this article.
翻译:暂无翻译