Despite the success of generative adversarial networks (GANs) in generating visually appealing images, they are notoriously challenging to train. In order to stabilize the learning dynamics in minimax games, we propose a novel recursive reasoning algorithm: Level $k$ Gradient Play (Lv.$k$ GP) algorithm. In contrast to many existing algorithms, our algorithm does not require sophisticated heuristics or curvature information. We show that as $k$ increases, Lv.$k$ GP converges asymptotically towards an accurate estimation of players' future strategy. Moreover, we justify that Lv.$\infty$ GP naturally generalizes a line of provably convergent game dynamics which rely on predictive updates. Furthermore, we provide its local convergence property in nonconvex-nonconcave zero-sum games and global convergence in bilinear and quadratic games. By combining Lv.$k$ GP with Adam optimizer, our algorithm shows a clear advantage in terms of performance and computational overhead compared to other methods. Using a single Nvidia RTX3090 GPU and 30 times fewer parameters than BigGAN on CIFAR-10, we achieve an FID of 10.17 for unconditional image generation within 30 hours, allowing GAN training on common computational resources to reach state-of-the-art performance.
翻译:尽管基因对抗网络(GANs)在生成视觉吸引图像方面取得了成功,但它们在培训方面却面临着臭名昭著的挑战性挑战。为了稳定迷你游戏的学习动态,我们提出了一个新的循环推理算法:Glevel $k$ Gradient Play(Lv.$k$ GP)算法。与许多现有的算法相比,我们的算法并不要求精密的超光速或曲线信息。我们显示,随着美元的增长,GP和Adam 最优化的组合,我们的算法显示,与其它方法相比,在业绩和计算管理方面显然有优势。此外,我们有理由认为,Lv.$\infty$GP自然地将一系列可感知的趋同的游戏动态法化:以预测性更新为依托。此外,我们提供了非convex-nnonconconconcave 零和双线和二次游戏的全球趋联。我们把Lv.k$k$GPG与Adam 最优化的阵列,我们的算法在业绩和计算上比其他方法更小的30-AN 10-AN 的NAxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx30xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,我们30xxxx30xxxxxxxxxxxxxxxxxx30xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx