Implementation of a twin-field quantum key distribution network faces limitations, including the low tolerance of interference errors for phase-matching type protocols and the strict constraint regarding intensity and probability for sending-or-not-sending type protocols. Here, we propose a two-photon twin-field quantum key distribution protocol inspired by multiplexing in quantum repeaters. We achieve twin-field-type two-photon interference through post-matching phase-correlated single-photon interference events. We exploit the non-interference mode as the code mode to highly tolerate interference errors, and the two-photon interference naturally removes the intensity and probability constraint. Therefore, our protocol can transcend the abovementioned limitations while breaking the secret key capacity of repeaterless quantum key distribution. These features are tailored for scalable quantum networks, under which each node with fixed system parameters can dynamically switch different attenuation links. Simulations show that for a four-user network, the key rates of our protocol for all six links can either exceed or approach the secret key capacity. However, the key rates of all links are lower than the key capacity when using phase-matching type protocols. Additionally, four of the links could not extract the key when using sending-or-not-sending type protocols. We anticipate that our protocol can facilitate the development of practical and efficient quantum networks.


翻译:实施双野量子键分布网面临限制,包括相配类型协议的干扰错误容忍度低,以及发送或不发送类型协议的强度和概率的严格限制。在这里,我们提议了由量子中继器中多轴作用的双光双光量键分布协议。我们通过相配后相配阶段相联单一光子干扰事件实现双场型二光子干扰。我们利用互不干涉模式作为代码模式来高度容忍干扰错误,而两光子干扰自然消除了强度和概率限制。因此,我们的协议可以超越上述限制,同时打破无中继量键分布的秘密关键能力。这些特征是针对可缩放量子网络设计的,在这种网络下,每个带有固定系统参数的节点可以动态地转换不同的减速链接。模拟表明,对于四用户网络,我们所有六个链接的关键速度可以超过或接近秘密关键能力。然而,所有连接的关键速度都可能比使用相配式协议类型传输的关键能力低。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月19日
Arxiv
0+阅读 · 2023年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员