The rapid development of generative technology opens up possibility for higher level of automation, and artificial intelligence (AI) embodiment in robotic systems is imminent. However, due to the blackbox nature of the generative technology, the generation of the knowledge and workflow scheme is uncontrolled, especially in a dynamic environment and a complex scene. This poses challenges to regulations in safety-demanding applications such as medical scenes. We argue that the unregulated generative processes from AI is fitted for low level end tasks, but intervention in the form of manual or automated regulation should happen post-workflow-generation and pre-robotic-execution. To address this, we propose a roadmap that can lead to fully automated and regulated robotic systems. In this paradigm, the high level policies are generated as structured graph data, enabling regulatory oversight and reusability, while the code base for lower level tasks is generated by generative models. Our approach aims the transitioning from expert knowledge to regulated action, akin to the iterative processes of study, practice, scrutiny, and execution in human tasks. We identify the generative and deterministic processes in a design cycle, where generative processes serve as a text-based world simulator and the deterministic processes generate the executable system. We propose State Machine Seralization Language (SMSL) to be the conversion point between text simulator and executable workflow control. From there, we analyze the modules involved based on the current literature, and discuss human in the loop. As a roadmap, this work identifies the current possible implementation and future work. This work does not provide an implemented system but envisions to inspire the researchers working on the direction in the roadmap. We implement the SMSL and D-SFO paradigm that serve as the starting point of the roadmap.
翻译:暂无翻译