We prove convergence rates of Stochastic Zeroth-order Gradient Descent (SZGD) algorithms for Lojasiewicz functions. The SZGD algorithm iterates as \begin{align*} \mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \widehat{\nabla} f (\mathbf{x}_t), \qquad t = 0,1,2,3,\cdots , \end{align*} where $f$ is the objective function that satisfies the \L ojasiewicz inequality with \L ojasiewicz exponent $\theta$, $\eta_t$ is the step size (learning rate), and $ \widehat{\nabla} f (\mathbf{x}_t) $ is the approximate gradient estimated using zeroth-order information only. Our results show that $ \{ f (\mathbf{x}_t) - f (\mathbf{x}_\infty) \}_{t \in \mathbb{N} } $ can converge faster than $ \{ \| \mathbf{x}_t - \mathbf{x}_\infty \| \}_{t \in \mathbb{N} }$, regardless of whether the objective $f$ is smooth or nonsmooth.
翻译:本文证明了Stochastic Zeroth-order Gradient Descent(SZGD)算法在Lojasiewicz函数中的收敛速率。SZGD算法迭代如下:\begin{align*}\mathbf { x } _ { t + 1 } = \mathbf { x }_t - \eta_t \widehat{\nabla} f (\mathbf{x}_t), \qquad t = 0,1,2,3, \cdots,\end{align*} 其中$f$是满足Lojasiewicz不等式的目标函数,$\theta$是Lojasiewicz指数,$\eta _ t$是步长(学习率),$ \widehat{\nabla} f (\mathbf{x}_t) $是仅使用零阶信息估计的近似梯度。我们的结果表明,无论目标$f$是光滑还是非光滑的,$ \{ f (\mathbf{x}_t) - f (\mathbf{x}_\infty) \}_{t \in \mathbb{N} } $都可能比$ \{ \| \mathbf{x}_t - \mathbf{x}_\infty \| \}_{t \in \mathbb{N} }$更快地收敛,。