Rust is a popular memory-safe systems programming language. In order to interact with hardware or call into non-Rust libraries, Rust provides \emph{unsafe} language features that shift responsibility for ensuring memory safety to the developer. Failing to do so, may lead to memory safety violations in unsafe code which can violate safety of the entire application. In this work we explore in-process isolation with Memory Protection Keys as a mechanism to shield safe program sections from safety violations that may happen in unsafe sections. Our approach is easy to use and comprehensive as it prevents heap and stack-based violations. We further compare process-based and in-process isolation mechanisms and the necessary requirements for data serialization, communication, and context switching. Our results show that in-process isolation can be effective and efficient, permits for a high degree of automation, and also enables a notion of application rewinding where the safe program section may detect and safely handle violations in unsafe code.
翻译:暂无翻译