Grasp synthesis for 3D deformable objects remains a little-explored topic, most works aiming to minimize deformations. However, deformations are not necessarily harmful -- humans are, for example, able to exploit deformations to generate new potential grasps. How to achieve that on a robot is though an open question. This paper proposes an approach that uses object stiffness information in addition to depth images for synthesizing high-quality grasps. We achieve this by incorporating object stiffness as an additional input to a state-of-the-art deep grasp planning network. We also curate a new synthetic dataset of grasps on objects of varying stiffness using the Isaac Gym simulator for training the network. We experimentally validate and compare our proposed approach against the case where we do not incorporate object stiffness on a total of 2800 grasps in simulation and 420 grasps on a real Franka Emika Panda. The experimental results show significant improvement in grasp success rate using the proposed approach on a wide range of objects with varying shapes, sizes, and stiffness. Furthermore, we demonstrate that the approach can generate different grasping strategies for different stiffness values, such as pinching for soft objects and caging for hard objects. Together, the results clearly show the value of incorporating stiffness information when grasping objects of varying stiffness.
翻译:3D 变形对象的 Grasp 合成 3D 可变形对象的 Grasp 合成仍是一个小探索的话题, 大部分旨在尽量减少变形的作品都是为了尽量减少变形。 但是,变形不一定是有害的 -- -- 例如,人类能够利用变形来创造新的潜在机会。 如何在机器人上实现变形是一个开放的问题。 本文提出了一个方法, 使用物体变硬性信息, 外加深度图像, 以合成高品质握住。 我们通过将物体变硬性作为补充投入, 来实现这一目标。 我们还利用Isaac Gym 模拟器来为网络培训不同僵硬性对象制作新的合成数据集。 我们实验性地验证和比较了我们所提议的方法, 在模拟中不包含2800个物体的僵硬性信息, 在真实的Franka Emika Panda 上, 420 抓紧性图像。 我们的实验结果显示, 使用各种形状、 大小和坚硬性的不同物体的拟议方法, 成功率在各种物体上有很大的成功率率率上有很大改进。 此外, 我们证明, 僵硬性的方法可以将僵硬性地掌握不同物体的策略, 。