In this work, we develop a method for learning interpretable, thermodynamically stable and Galilean invariant partial differential equations (PDEs) based on the Conservation-dissipation Formalism of irreversible thermodynamics. As governing equations for non-equilibrium flows in one dimension, the learned PDEs are parameterized by fully-connected neural networks and satisfy the conservation-dissipation principle automatically. In particular, they are hyperbolic balance laws and Galilean invariant. The training data are generated from a kinetic model with smooth initial data. Numerical results indicate that the learned PDEs can achieve good accuracy in a wide range of Knudsen numbers. Remarkably, the learned dynamics can give satisfactory results with randomly sampled discontinuous initial data and Sod's shock tube problem although it is trained only with smooth initial data.
翻译:在这项工作中,我们根据不可逆转的热动力学的保存-分散形式化,开发了一种可解释、热动力稳定性和加利利平方程式(PDEs)的学习方法。作为非平衡性流动的一个层面的治理方程式,所学的PDE通过完全连接的神经网络进行参数化,并自动满足保护-分散原则。特别是,它们是双曲平衡法和加利利平滑的不变化性。培训数据来自具有平稳初始数据的动动画模型。数字结果显示,所学的PDEs可以在广泛的Knudsen数字中取得良好的准确性。值得注意的是,所学的动态可以通过随机抽样的不连续初始数据和Sod的冲击管问题产生令人满意的结果,尽管它只受过光滑的初步数据的培训。