In this paper, we obtain a number of new simple pseudo-polynomial time algorithms on the well-known knapsack problem, focusing on the running time dependency on the number of items $n$, the maximum item weight $w_\mathrm{max}$, and the maximum item profit $p_\mathrm{max}$. Our results include: - An $\widetilde{O}(n^{3/2}\cdot \min\{w_\mathrm{max},p_\mathrm{max}\})$-time randomized algorithm for 0-1 knapsack, improving the previous $\widetilde{O}(\min\{n w_\mathrm{max} p_\mathrm{max}^{2/3},n p_\mathrm{max} w_\mathrm{max}^{2/3}\})$ [Bringmann and Cassis, ESA'23] for the small $n$ case. - An $\widetilde{O}(n+\min\{w_\mathrm{max},p_\mathrm{max}\}^{5/2})$-time randomized algorithm for bounded knapsack, improving the previous $O(n+\min\{w_\mathrm{max}^3,p_\mathrm{max}^3\})$ [Polak, Rohwedder and Wegrzyck, ICALP'21].
翻译:暂无翻译