The Finite Selection Model (FSM) was developed by Carl Morris in the 1970s for the design of the RAND Health Insurance Experiment (HIE) (Morris 1979, Newhouse et al. 1993), one of the largest and most comprehensive social science experiments conducted in the U.S. In the FSM, a treatment group at each of its turns selects the available unit that maximally improves the combined quality of its resulting group of units according to a common optimality criterion. In the HIE and beyond, we revisit, formalize, and extend the FSM as a general tool for experimental design. Leveraging the idea of D-optimality, we propose and analyze a new selection criterion in the FSM. The FSM using the D-optimal selection function has no tuning parameters, is affine invariant, and when appropriate retrieves several classical designs such as randomized block and matched-pair designs. For multi-arm experiments, we propose algorithms to generate a fair and random selection order of treatments. We demonstrate FSM's performance in a case study based on the HIE, a simulation study, and in ten randomized studies from the health and social sciences. We recommend the FSM be considered in experimental design for its conceptual simplicity, efficiency, and robustness.
翻译:20世纪70年代,卡尔·莫里斯为设计RAND健康保险实验(HIE)(Morris 1979年,Newhouse等人,1993年)开发了Finite选择模型(FSM),这是在美国进行的最大和最全面的社会科学实验之一。 在密克罗尼西亚联邦,一个治疗小组在每一个转弯处都选择了可用单元,按照共同的最佳性标准,最大程度地提高由此形成的单位组合的综合质量。在HIE内外,我们重新审视、正式确定并扩大FSM,作为实验设计的一般工具。利用D-最佳性的概念,我们在FSM提出并分析一个新的选择标准。使用D-最佳选择功能的FSM没有调整参数,是一丝不苟的,并酌情检索一些经典设计,如随机化块和匹配型设计。在多臂实验中,我们提出算法,以产生一个公平和随机的治疗顺序。我们在一项案例研究中展示了FSM的绩效。我们从HIIE、模拟研究、建议模拟性研究、建议精确性、随机性研究中,从我们考虑的FSM健康和社会设计中,从10项随机性研究中显示FSM。