The binary primitive BCH codes are cyclic and are constructed by choosing a subset of the cyclotomic cosets. Which subset is chosen determines the dimension, the minimum distance and the weight distribution of the BCH code. We construct possible BCH codes and determine their coderate, true minimum distance and the non-equivalent codes. A particular choice of cyclotomic cosets gives BCH codes which are, extended by one bit, equivalent to Reed-Muller codes, which is a known result from the sixties. We show that BCH codes have possibly better parameters than Reed-Muller codes, which are related in recent publications to polar codes. We study the decoding performance of these different BCH codes using information set decoding based on minimal weight codewords of the dual code. We show that information set decoding is possible even in case of a channel without reliability information since the decoding algorithm inherently calculates reliability information. Different BCH codes of the same rate are compared and different decoding performances and complexity are observed. Some examples of hard decision decoding of BCH codes have the same decoding performance as maximum likelihood decoding. All presented decoding methods can possibly be extended to include reliability information of a Gaussian channel for soft decision decoding. We show simulation results for soft decision list information set decoding and compare the performance to other methods.
翻译:二进制原始 BCH 代码是循环式的, 其构建方法是通过选择循环式组合组合的子集构建。 选择哪个子集来决定 BCH 代码的尺寸、 最小距离和重量分布。 我们构建可能的 BCH 代码, 并用二进制代码的最小重量代码来决定其代码、 真正最小距离和非等值代码。 选择循环式组合组合的代码可以给 BCH 代码, 这些代码以一小部分的速度延伸, 相当于 Reed- Muller 代码, 这是六进制的已知结果。 我们显示 BCH 代码的参数可能比 Reed- Muller 代码的参数更好, 后者与最近出版的极地代码相关。 我们使用基于二进制代码的最小重量代码解码、 真正最小距离和非等值代码的信息集来研究这些不同的 BCH 代码的解码性能。 我们显示的软化软化代码的硬决定性能和复杂性能, 包括其它软化决定的解算方法的可靠性定义。 我们显示的可靠性定义的最大解算方法。