Model discovery aims at autonomously discovering differential equations underlying a dataset. Approaches based on Physics Informed Neural Networks (PINNs) have shown great promise, but a fully-differentiable model which explicitly learns the equation has remained elusive. In this paper we propose such an approach by integrating neural network-based surrogates with Sparse Bayesian Learning (SBL). This combination yields a robust model discovery algorithm, which we showcase on various datasets. We then identify a connection with multitask learning, and build on it to construct a Physics Informed Normalizing Flow (PINF). We present a proof-of-concept using a PINF to directly learn a density model from single particle data. Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.
翻译:模型发现旨在自发发现数据集背后的不同方程式。基于物理知情神经网络(PINNs)的方法显示了巨大的希望,但明确学习该方程式的完全差别化的模式仍然难以实现。在本文中,我们提出这样一种方法,将神经网络替代机器人与斯普尔塞·巴耶斯学习(SBL)相结合。这种结合产生了一种强大的模型发现算法,我们在各种数据集上展示了这种算法。我们随后确定了与多任务学习的联系,并在此基础上构建了一个物理知情的正常流动(PINF)。我们提出了一个验证概念,用PINF直接从单个粒子数据中学习密度模型。我们的工作将PINNs扩展到了各种神经网络结构,并将基于神经网络的代孕方法与贝斯参数的丰富领域联系起来。