With the fast development of modern deep learning techniques, the study of dynamic systems and neural networks is increasingly benefiting each other in a lot of different ways. Since uncertainties often arise in real world observations, SDEs (stochastic differential equations) come to play an important role. To be more specific, in this paper, we use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series which has big jump properties and high probability distribution shift. Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data so as to determine the input structure for our forecasting model. Second, we explore SDEs driven by $\alpha$-stable L\'evy motion to model the time series data and solve the problem through neural network approximation. Third, we construct the attention mechanism to achieve multi-time step prediction. Finally, we illustrate our method by applying it to stock marketing time series prediction and show the results outperform several baseline deep learning models.
翻译:随着现代深层学习技术的快速发展,动态系统和神经网络的研究正在以许多不同的方式日益相互受益。由于在现实世界观测中经常出现不确定性,SDE(随机差异方程式)将发挥重要作用。更具体地说,在本文件中,我们使用一批装有神经网络的SDE(SDEs)来预测噪音时间序列的长期趋势,这种时间序列具有巨大的跳跃特性和高概率分布变化。我们的贡献是,首先,我们利用空间分阶段重建方法提取时间序列数据的内在维度,以便确定我们预测模型的输入结构。第二,我们探索由美元-alpha$- sable L\'evy驱动的SDE(SDEs)运动来模拟时间序列数据,并通过神经网络的近似而解决问题。第三,我们构建关注机制,以实现多时步预测。最后,我们通过将它应用于股票营销时间序列预测和显示结果优于几个基线深度学习模型来说明我们的方法。