A distributional symmetry is invariance of a distribution under a group of transformations. Exchangeability and stationarity are examples. We explain that a result of ergodic theory provides a law of large numbers: If the group satisfies suitable conditions, expectations can be estimated by averaging over subsets of transformations, and these estimators are strongly consistent. We show that, if a mixing condition holds, the averages also satisfy a central limit theorem, a Berry-Esseen bound, and concentration. These are extended further to apply to triangular arrays, to randomly subsampled averages, and to a generalization of U-statistics. As applications, we obtain new results on exchangeability, random fields, network models, and a class of marked point processes. We also establish asymptotic normality of the empirical entropy for a large class of processes. Some known results are recovered as special cases, and can hence be interpreted as an outcome of symmetry. The proofs adapt Stein's method.
翻译:分布对称性是一组变异下分布的变量。 互换性和稳定性是例子。 我们解释说, 异种理论的结果提供了大量数字的法则: 如果该组满足了适当的条件, 期望可以通过平均超分变换来估计, 而这些估计是十分一致的。 我们显示, 如果混合条件保持, 平均值也满足了一个核心限制的理论, 一种Berry- Esseen 约束, 以及集中 。 这些都进一步适用于三角阵列, 随机的子抽样平均数, 以及U- Statistics 的概括化。 作为应用, 我们获得了关于可交换性、 随机字段、 网络模型 和标志性进程类别的新结果。 我们还确定了大量过程的经验性昆虫的无症状常态性。 一些已知的结果作为特殊案例被恢复, 因此可以被解释为对称的结果。 证据调整了 Stein 的方法 。