Making top-down human pose estimation method present both good performance and high efficiency is appealing. Mask RCNN can largely improve the efficiency by conducting person detection and pose estimation in a single framework, as the features provided by the backbone are able to be shared by the two tasks. However, the performance is not as good as traditional two-stage methods. In this paper, we aim to largely advance the human pose estimation results of Mask-RCNN and still keep the efficiency. Specifically, we make improvements on the whole process of pose estimation, which contains feature extraction and keypoint detection. The part of feature extraction is ensured to get enough and valuable information of pose. Then, we introduce a Global Context Module into the keypoints detection branch to enlarge the receptive field, as it is crucial to successful human pose estimation. On the COCO val2017 set, our model using the ResNet-50 backbone achieves an AP of 68.1, which is 2.6 higher than Mask RCNN (AP of 65.5). Compared to the classic two-stage top-down method SimpleBaseline, our model largely narrows the performance gap (68.1 AP vs. 68.9 AP) with a much faster inference speed (77 ms vs. 168 ms), demonstrating the effectiveness of the proposed method. Code is available at: https://github.com/lingl_space/maskrcnn_keypoint_refined.


翻译:制作上到下到上到上到的人类表面估计方法既表现良好,效率也高,这是令人感兴趣的。 Mask RCNNN 能够通过进行个人探测和在一个单一框架内作出估计来大大提高效率,因为骨干所提供的特征能够由两个任务共同分享。但是,这种业绩不如传统的两阶段方法好。在本文件中,我们力求在很大程度上推进蒙斯-RCNN 的人体构成估计结果,并保持效率。具体地说,我们改进了整个构成估计过程,其中包括特征提取和关键点探测。特征提取部分可以确保获得足够和有价值的姿势信息。然后,我们在关键点检测分支中引入一个全球背景模块,以扩大接受的场,因为这是成功人类表面估计的关键。在 COCO val2017 设置上,我们使用 Res-50 骨干模型的模型达到AP 68.1, 比Mask RCNN (AP 65.5)。 与传统的两阶段自上到下到下到下到上到上到上到上到上到的SBebline方法相比,我们的模型大体上缩小了业绩差距(68.1 AP v. AP.9 AP),展示了168/macrefrass a/ apprass prefin srass pass pass pass pass pass pass pass.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员