Correlated proportions appear in many real-world applications and present a unique challenge in terms of finding an appropriate probabilistic model due to their constrained nature. The bivariate beta is a natural extension of the well-known beta distribution to the space of correlated quantities on $[0, 1]^2$. Its construction is not unique, however. Over the years, many bivariate beta distributions have been proposed, ranging from three to eight or more parameters, and for which the joint density and distribution moments vary in terms of mathematical tractability. In this paper, we investigate the construction proposed by Olkin & Trikalinos (2015), which strikes a balance between parameter-richness and tractability. We provide classical (frequentist) and Bayesian approaches to estimation in the form of method-of-moments and latent variable/data augmentation coupled with Hamiltonian Monte Carlo, respectively. The elicitation of bivariate beta as a prior distribution is also discussed. The development of diagnostics for checking model fit and adequacy is explored in depth with the aid of Monte Carlo experiments under both well-specified and misspecified data-generating settings. Keywords: Bayesian estimation; bivariate beta; correlated proportions; diagnostics; method of moments.


翻译:在现实世界的许多应用中,相关比例出现在许多现实世界应用中,对找到适当的概率模型提出了独特的挑战。双倍乙酸是众所周知的贝类分布自然延伸至 $[0, 1] $2$ 的相关数量空间。但是,其构造并不独特。多年来,提出了许多双倍乙型分布,范围从三个到八个或八个以上参数不等,其联合密度和分布时间在数学可移动性方面各不相同。在本文中,我们调查Olkin & Trikalinos(2015)提出的建筑工程,该工程在参数丰富性和可移动性之间取得平衡。我们提供了古典(反复型)和巴耶西亚的方法,分别以移动方法和潜在的可变/数据增强为形式,与汉密尔顿·蒙特卡洛相结合。还讨论了前一种分布对双倍乙型乙型传播的诱因。我们深入探讨了用于检查模型是否适合和适当性的诊断方法的开发情况,在精心描述和错误描述的数据生成环境中的蒙特卡洛实验的助力。关键词是:Bayes 诊断;Basia imasimima;Bisal;Basimal;Basimal;Bastial;Bastial;Basims;Basal;Basals;Basal.</s>

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关VIP内容
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员