Pruning redundant filters in CNN models has received growing attention. In this paper, we propose an adaptive binary search-first hybrid pyramid- and clustering-based (ABSHPC-based) method for pruning filters automatically. In our method, for each convolutional layer, initially a hybrid pyramid data structure is constructed to store the hierarchical information of each filter. Given a tolerant accuracy loss, without parameters setting, we begin from the last convolutional layer to the first layer; for each considered layer with less or equal pruning rate relative to its previous layer, our ABSHPC-based process is applied to optimally partition all filters to clusters, where each cluster is thus represented by the filter with the median root mean of the hybrid pyramid, leading to maximal removal of redundant filters. Based on the practical dataset and the CNN models, with higher accuracy, the thorough experimental results demonstrated the significant parameters and floating-point operations reduction merits of the proposed filter pruning method relative to the state-of-the-art methods.


翻译:CNN模型中的冗余过滤器受到越来越多的关注。 在本文中,我们建议对自动处理过滤器采用适应性二进制搜索第一混合金字塔和集群法(ABSHPC以ABSHPC为基础) 。 在我们的方法中,对于每个卷变层,最初构建了一个混合金字塔数据结构,以存储每个过滤器的等级信息。考虑到容忍性准确性损失,没有设定参数,我们从最后一个卷变层开始到第一个层;对于每个被考虑的层,相对于上一层,运行速度较小或相等,我们基于ABSHPC的程序应用到将所有过滤器以最佳方式分割到集群,因此,每个组以混合金字塔中根平均值的过滤器为代表,从而导致最大程度地清除冗余过滤器。 根据实用数据集和CNN模型,以更高的精确度,彻底的实验结果展示了拟议的过滤处理方法相对于最新方法的重大参数和浮点操作的优点。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
专知会员服务
61+阅读 · 2020年3月19日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
68+阅读 · 2020年3月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
3+阅读 · 2018年5月20日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员