This paper proposes to test the number of common factors in high-dimensional factor models by bootstrap. We provide asymptotic distributions for the eigenvalues of bootstrapped sample covariance matrix under mild conditions. The spiked eigenvalues converge weakly to Gaussian limits after proper scaling and centralization. The limiting distribution of the largest non-spiked eigenvalue is mainly determined by order statistics of bootstrap resampling weights, and follows extreme value distribution. We propose two testing schemes based on the disparate behavior of the spiked and non-spiked eigenvalues. The testing procedures can perform reliably with weak factors, cross-sectionally and serially correlated errors. Our technical proofs contribute to random matrix theory with convexly decaying density and unbounded support, or with general elliptical distributions.
翻译:本文建议用靴子来测试高维系数模型中常见因素的数量。 我们为靴子样本共变矩阵在温和条件下的二元值提供无症状分布。 峰值在适当缩放和集中后微弱地汇合到高斯极限。 最大的非稀释值的有限分布主要由靴子区抽取重量的定序统计决定, 并跟随极端值分布。 我们根据加注和非加注的二元值的不同行为, 提出了两种测试方案。 测试程序可以使用薄弱的因素, 跨部门的和连续的关联错误, 可靠地运行。 我们的技术证明有助于随机矩阵理论, 其密度和无粘附支持, 或一般的椭圆分布 。