Dynamic Time Wrapping (DTW) is a widely used algorithm for measuring similarities between two time series. It is especially valuable in a wide variety of applications, such as clustering, anomaly detection, classification, or video segmentation, where the time-series have different timescales, are irregularly sampled, or are shifted. However, it is not prone to be considered as a loss function in an end-to-end learning framework because of its non-differentiability and its quadratic temporal complexity. While differentiable variants of DTW have been introduced by the community, they still present some drawbacks: computing the distance is still expensive and this similarity tends to blur some differences in the time-series. In this paper, we propose a fast and differentiable approximation of DTW by comparing two architectures: the first one for learning an embedding in which the Euclidean distance mimics the DTW, and the second one for directly predicting the DTW output using regression. We build the former by training a siamese neural network to regress the DTW value between two time-series. Depending on the nature of the activation function, this approximation naturally supports differentiation, and it is efficient to compute. We show, in a time-series retrieval context on EEG datasets, that our methods achieve at least the same level of accuracy as other DTW main approximations with higher computational efficiency. We also show that it can be used to learn in an end-to-end setting on long time series by proposing generative models of EEGs.


翻译:动态时间环绕( DTW) 是用来测量两个时间序列之间相似之处的一种广泛使用的算法。 它在广泛应用中特别有用, 比如集成、异常检测、分类或视频分割, 时间序列有不同的时间尺度, 是不定期抽样的, 或者被转移。 但是, 它不易被视为在端到端学习框架中的一种损失函数, 因为它没有差异, 并且具有四面性时间复杂性 。 虽然社区已经引入了 DTW 的不同变量, 但仍有一些缺点 : 计算距离仍然昂贵, 而这种相似性往往模糊时间序列中的某些差异 。 在本文中, 我们建议对 DTW 快速和不同的近似值, 比较两个结构: 第一个是学习嵌入式, 因为它的Euclidean距离会模拟 DTW, 第二个是直接预测DTW 输出时程。 我们通过培训一个 Siamy 神经网络, 从而在两个时间序列中再次反向DGW, 将 EEE 的精度模型的精细化到直径, 显示我们的 EGER 的精度 的精度, 的精度, 的精度的精度, 显示我们的精度的精度的精度。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
23+阅读 · 2022年2月24日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员