This paper proposes a model-based framework to automatically and efficiently design understandable and verifiable behaviors for swarms of robots. The framework is based on the automatic extraction of two distinct models: 1) a neural network model trained to estimate the relationship between the robots' sensor readings and the global performance of the swarm, and 2) a probabilistic state transition model that explicitly models the local state transitions (i.e., transitions in observations from the perspective of a single robot in the swarm) given a policy. The models can be trained from a data set of simulated runs featuring random policies. The first model is used to automatically extract a set of local states that are expected to maximize the global performance. These local states are referred to as desired local states. The second model is used to optimize a stochastic policy so as to increase the probability that the robots in the swarm observe one of the desired local states. Following these steps, the framework proposed in this paper can efficiently lead to effective controllers. This is tested on four case studies, featuring aggregation and foraging tasks. Importantly, thanks to the models, the framework allows us to understand and inspect a swarm's behavior. To this end, we propose verification checks to identify some potential issues that may prevent the swarm from achieving the desired global objective. In addition, we explore how the framework can be used in combination with a "standard" evolutionary robotics strategy (i.e., where performance is measured via simulation), or with online learning.
翻译:本文提出一个基于模型的框架,以自动和高效地设计可理解和可核查的机器人群行为。 框架基于两个不同模型的自动提取:1) 一个经过训练的神经网络模型,以估计机器人传感器读数与群群全球性能之间的关系;2) 一个概率性国家过渡模型,以明确模拟当地国家过渡( 即从群群中单一机器人的角度进行观察转换) 的政策。 模型可以从一组模拟运行数据中培训出随机政策。 第一个模型用来自动提取一组预期最大限度地提高全球绩效的当地国家。 这些当地国家被称为理想的当地国家。 第二个模型用来优化随机性政策, 以便增加集合中的机器人观察所期望的当地州之一的可能性。 遵循这些步骤, 本文提出的框架可以有效地引导有效的控制者。 测试了四个案例研究, 显示汇总和配置任务。 重要的是, 由于这些模型, 这些本地国家被称作理想的当地国家。 第二个模型用来优化随机性政策, 以便增加一个我们用来理解和研究的“ 标准” 。 在这样的模型中, 我们用一个在线框架, 来测量和研究“ 理解一个可能的操作 ” 。