Self-disclosed mental health diagnoses, which serve as ground truth annotations of mental health status in the absence of clinical measures, underpin the conclusions behind most computational studies of mental health language from the last decade. However, psychiatric conditions are dynamic; a prior depression diagnosis may no longer be indicative of an individual's mental health, either due to treatment or other mitigating factors. We ask: to what extent are self-disclosures of mental health diagnoses actually relevant over time? We analyze recent activity from individuals who disclosed a depression diagnosis on social media over five years ago and, in turn, acquire a new understanding of how presentations of mental health status on social media manifest longitudinally. We also provide expanded evidence for the presence of personality-related biases in datasets curated using self-disclosed diagnoses. Our findings motivate three practical recommendations for improving mental health datasets curated using self-disclosed diagnoses: 1) Annotate diagnosis dates and psychiatric comorbidities; 2) Sample control groups using propensity score matching; 3) Identify and remove spurious correlations introduced by selection bias.


翻译:在缺乏临床措施的情况下,自我披露的心理健康诊断作为心理健康状况的基本真相说明,是过去10年来大多数心理健康语言计算研究结论的基础;然而,精神状况是动态的;由于治疗或其他减轻因素,先前的抑郁症诊断可能不再能表明个人的心理健康;我们问:自我披露心理健康诊断结果在多大程度上与时俱进?我们分析5年前在社交媒体上披露抑郁症诊断结果的个人最近的活动,反过来,我们又重新了解社会媒体对心理健康状况的表述方式如何表现为纵向的。我们还提供了更多证据,说明在使用自我披露的诊断整理的数据中存在与个性有关的偏见。我们的调查结果鼓励提出三项切实可行的建议,用自我披露的诊断方法改进心理健康数据集:(1) 匿名诊断日期和精神病并发症;(2) 抽样控制小组使用偏好分数匹配;(3) 查明和消除选择偏差带来的虚假关联。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
14+阅读 · 2021年8月5日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员