The supervised-learning-based morphing attack detection (MAD) solutions achieve outstanding success in dealing with attacks from known morphing techniques and known data sources. However, given variations in the morphing attacks, the performance of supervised MAD solutions drops significantly due to the insufficient diversity and quantity of the existing MAD datasets. To address this concern, we propose a completely unsupervised MAD solution via self-paced anomaly detection (SPL-MAD) by leveraging the existing large-scale face recognition (FR) datasets and the unsupervised nature of convolutional autoencoders. Using general FR datasets that might contain unintentionally and unlabeled manipulated samples to train an autoencoder can lead to a diverse reconstruction behavior of attack and bona fide samples. We analyze this behavior empirically to provide a solid theoretical ground for designing our unsupervised MAD solution. This also results in proposing to integrate our adapted modified self-paced learning paradigm to enhance the reconstruction error separability between the bona fide and attack samples in a completely unsupervised manner. Our experimental results on a diverse set of MAD evaluation datasets show that the proposed unsupervised SPL-MAD solution outperforms the overall performance of a wide range of supervised MAD solutions and provides higher generalizability on unknown attacks.
翻译:为了解决这一问题,我们提出一个完全不受监督的MAD解决方案,办法是利用现有的大型脸部识别数据集和直肠式自动电解码器的不受监督性质。但是,由于变形式袭击的不同,由于现有MAD数据集的多样性和数量不足,受监督的MAD解决方案的性能显著下降。为解决这一关切,我们提出一个完全不受监督的MAD解决方案,办法是利用现有的大型脸部识别数据集和直肠式自动解剖器的不受监督性质,利用现有的大型脸部识别数据集和直肠式自动解剖器的未经监督性质。使用可能含有无意和未贴贴标签的操纵样本的一般FR数据集来训练自动解码器,可以导致对攻击和善意样本进行多种多样的重建行为。我们从经验上分析这一行为,为设计我们不受监督的MAD解决方案提供坚实的理论基础。这还导致提议整合我们经过调整的自步式学习模式,以完全不受监督的方式加强真实性和攻击样品之间的重建误差。我们在一套不同层次的磁盘化的MSD总体性评估模型上,提供了一套不同的多路见性通用MAD的通用预测性模型。