This paper integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) into a unified framework using one simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). The STAR-RIS plays an important role in adjusting the decoding order of hybrid users for efficient interference mitigation and omni-directional coverage extension. To capture the impact of non-ideal wireless channels on AirFL, a closed-form expression for the optimality gap (a.k.a. convergence upper bound) between the actual loss and the optimal loss is derived. This analysis reveals that the learning performance is significantly affected by active and passive beamforming schemes as well as wireless noise. Furthermore, when the learning rate diminishes as the training proceeds, the optimality gap is explicitly characterized to converge with a linear rate. To accelerate convergence while satisfying QoS requirements, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and the configuration mode of STAR-RIS. Next, a trust region-based successive convex approximation method and a penalty-based semidefinite relaxation approach are proposed to handle the decoupled non-convex subproblems iteratively. An alternating optimization algorithm is then developed to find a suboptimal solution for the original MINLP problem. Extensive simulation results show that i) the proposed framework can efficiently support NOMA and AirFL users via concurrent uplink communications, ii) our algorithms can achieve a faster convergence rate on IID and non-IID settings compared to existing baselines, and iii) both the spectrum efficiency and learning performance can be significantly improved with the aid of the well-tuned STAR-RIS.
翻译:本文将非垂直多存( NOMA) 和超空联运学习( AirFL) 整合成一个统一框架,同时传送并反映可重新配置智能表面( STAR- RIS ) 。 STAR- RIS 在调整混合用户解码顺序以有效减少干扰和全向覆盖扩展方面发挥重要作用。 要捕捉非理想无线频道对AirFL 的影响, 将实际损失和最佳损失( a.k.a. 上装) 之间最佳化差距的封闭式表达式( a.k.a. 趋同上装订) 。 此分析显示, 学习业绩表现受到一个同时满足QOS 要求的混合式非线性编程( MINLP) 。 联合设计用户传输能力和STRAT- RIIS 配置模式的连接。 下一步, IMAR- IMFL 升级 升级 和 升级后期IML 升级, IML 升级 升级 和 升级 升级 升级 升级后, 将显示一个基于 IMFAL- 升级的当前IMFAL 升级 升级 升级 升级 升级 升级 方法, 和升级 升级 升级 升级 升级, 升级 和升级 升级 升级 升级 升级 升级 升级 升级, 后 升级 升级 升级 升级,, 升级, 升级 升级 升级 后 升级,, 后 后 后 升级 后 升级 升级 升级 升级 升级 升级 升级,, 升级 升级 升级 升级, 升级, 升级 升级 升级,,,,,,,, 升级 升级,,, 升级 升级 升级 升级 升级, 升级,, 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级,,,,, 升级 升级 升级, 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级 升级