In this paper, a novel framework for guaranteeing ultra-reliable millimeter wave (mmW) communications using multiple artificial intelligence (AI)-enabled reconfigurable intelligent surfaces (RISs) is proposed. The use of multiple AI-powered RISs allows changing the propagation direction of the signals transmitted from a mmW access point (AP) thereby improving coverage particularly for non-line-of-sight (NLoS) areas. However, due to the possibility of highly stochastic blockage over mmW links, designing an intelligent controller to jointly optimize the mmW AP beam and RIS phase shifts is a daunting task. In this regard, first, a parametric risk-sensitive episodic return is proposed to maximize the expected bit rate and mitigate the risk of mmW link blockage. Then, a closed-form approximation of the policy gradient of the risk-sensitive episodic return is analytically derived. Next, the problem of joint beamforming for mmW AP and phase shift control for mmW RISs is modeled as an identical payoff stochastic game within a cooperative multi-agent environment, in which the agents are the mmW AP and the RISs. Two centralized and distributed controllers are proposed to control the policies of the mmW AP and RISs. To directly find an optimal solution, the parametric functional-form policies for these controllers are modeled using deep recurrent neural networks (RNNs). Simulation results show that the error between policies of the optimal and the RNN-based controllers is less than 1.5%. Moreover, the variance of the achievable rates resulting from the deep RNN-based controllers is 60% less than the variance of the risk-averse baseline.
翻译:在本文中,提出了使用多种人工智能(AI)驱动的可重新配置智能表面(RIS)来保证超抗力毫米波通信的新框架。使用多个 AI 驱动的RIS 能够改变从 mmW 接入点(AP) 传输信号的传播方向,从而改进对非视觉(NLOS) 连接的覆盖范围。然而,由于在 mmW 链接上存在高度偏差性阻隔的可能性,设计智能控制器以联合优化 mmW AP 和RIS 阶段转换是一项艰巨的任务。在这方面,首先,建议使用对风险敏感度(mmW 访问点) 访问点(APS), 从而可以改变信号的传播方向。由于基于 mmW 的 IMW 快速变异变和基于 mmW IMIS 的阶段变换控制, 设计一个智能控制器,在合作性多试管网络中,对风险敏感度有偏差的反向性反向性反向性反向回回。 在最优的 RISIS 中, 最优的 RF 政策是使用 IMF 和最优的 IMISL 。 。 的 的 的 和最优的 IMFL, 的 的 的 和最优的 RISP 将 的 的 的 的 MA 和最优的 的 的 的 的 的 的 MA 和最优的 。