Haptic feedback is important to make robots more dexterous and effective. High-resolution haptic sensors are still not widely available, and their application is often bound by robustness issues. A route towards high-resolution and robust sensors is to embed a few sensor units (taxels) into a flexible surface material and use signal processing to achieve sensing with super-resolution accuracy. We propose a theory for geometric super-resolution to guide the development of haptic sensors of this kind. This theory is based on sensor isolines and allows us to predict force sensitivity and accuracy in force magnitude and contact position as a spatial quantity. We evaluate the influence of different factors, such as the elastic properties of the material, using finite element simulations. We compare three representative real sensor unit types, empirically determine their isolines, and validate the theory in a custom-built sensor. Using machine learning techniques, we obtain an average super-resolution factor of 300. As we illustrate, our theory can guide future haptic sensor designs and inform various design choices.
翻译:催化回馈对于使机器人更加灵活和有效非常重要。 高分辨率偶然感应器尚未广泛提供,其应用往往受强力问题的约束。 通往高分辨率和强力感应器的途径是将一些感应器(税项)嵌入灵活的表面材料中,并利用信号处理实现超分辨率精确度的感测。 我们提出了一个几何超分辨率理论,以指导这类机感感感应器的开发。 这个理论基于感应异丙醇,使我们能够预测强度和接触位置的强度和准确度,作为空间数量。 我们用有限元素模拟来评估不同因素的影响,例如材料的弹性特性。 我们比较三种有代表性的真正感应器类型,根据经验确定其异性,并在定制传感器中验证理论。 我们使用机器学习技术,获得300个平均超分辨率因子。 正如我们所说明的那样, 我们的理论可以指导未来的感应感应感应器的设计,并告知各种设计选择。