Motion artifacts are a primary source of magnetic resonance (MR) image quality deterioration with strong repercussions on diagnostic performance. Currently, MR motion correction is carried out either prospectively, with the help of motion tracking systems, or retrospectively by mainly utilizing computationally expensive iterative algorithms. In this paper, we utilize a novel adversarial framework, titled MedGAN, for the joint retrospective correction of rigid and non-rigid motion artifacts in different body regions and without the need for a reference image. MedGAN utilizes a unique combination of non-adversarial losses and a novel generator architecture to capture the textures and fine-detailed structures of the desired artifacts-free MR images. Quantitative and qualitative comparisons with other adversarial techniques have illustrated the proposed model's superior performance.
翻译:移动文物是磁共振(MR)图像质量恶化的一个主要来源,对诊断性能产生强烈影响。目前,MR运动的校正要么是预期性的,借助运动跟踪系统,要么是追溯性的,主要是利用成本昂贵的计算迭代算法。在本文中,我们使用名为MedGAN的新颖的对抗性框架,联合追溯性地校正不同身体区域的硬性和非硬性运动文物,而不需要参考图像。 MedGAN利用非对抗性损失和新型生成器结构的独特组合来捕捉无MR图象的纹理和精细详细结构。 与其他对抗性技术的定量和定性比较展示了拟议模型的优异性表现。