Deep generative models provide a systematic way to learn nonlinear data distributions, through a set of latent variables and a nonlinear "generator" function that maps latent points into the input space. The nonlinearity of the generator imply that the latent space gives a distorted view of the input space. Under mild conditions, we show that this distortion can be characterized by a stochastic Riemannian metric, and demonstrate that distances and interpolants are significantly improved under this metric. This in turn improves probability distributions, sampling algorithms and clustering in the latent space. Our geometric analysis further reveals that current generators provide poor variance estimates and we propose a new generator architecture with vastly improved variance estimates. Results are demonstrated on convolutional and fully connected variational autoencoders, but the formalism easily generalize to other deep generative models.
翻译:深基因模型通过一系列潜在变量和非线性“ generator” 功能,为学习非线性数据分布提供了系统的方法,通过一系列潜在变量和非线性“ generator” 功能,绘制进入输入空间的潜值。 发电机的非线性意味着潜伏空间会扭曲输入空间。 在温和的条件下, 我们证明这种扭曲可以用随机的里曼尼度值来描述, 并表明根据这一指标, 距离和间系会大大改善。 这反过来又会改善潜伏空间的概率分布、 取样算法和组群。 我们的几何分析进一步显示, 目前的发电机提供低差异估计值, 我们提出新的发电机结构, 并大幅改进了差异估计。 结果表明, 这种变异性可以以随机和完全连接的自动变异体为特征, 但形式主义很容易被概括到其他深层的基因化模型中。