Jones et al. (2015) introduced the notion of $u$-representable graphs, where $u$ is a word over $\{1, 2\}$ different from $22\cdots2$, as a generalization of word-representable graphs. Kitaev (2016) showed that if $u$ is of length at least 3, then every graph is $u$-representable. This indicates that there are only two nontrivial classes in the theory of $u$-representable graphs: 11-representable graphs, which correspond to word-representable graphs, and 12-representable graphs. This study deals with 12-representable graphs. Jones et al. (2015) provided a characterization of 12-representable trees in terms of forbidden induced subgraphs. Chen and Kitaev (2022) presented a forbidden induced subgraph characterization of a subclass of 12-representable grid graphs. This paper shows that a bipartite graph is 12-representable if and only if it is an interval containment bigraph. The equivalence gives us a forbidden induced subgraph characterization of 12-representable bipartite graphs since the list of minimal forbidden induced subgraphs is known for interval containment bigraphs. We then have a forbidden induced subgraph characterization for grid graphs, which solves an open problem of Chen and Kitaev (2022). The study also shows that a graph is 12-representable if and only if it is the complement of a simple-triangle graph. This equivalence indicates that a necessary condition for 12-representability presented by Jones et al. (2015) is also sufficient. Finally, we show from these equivalences that 12-representability can be determined in $O(n^2)$ time for bipartite graphs and in $O(n(\bar{m}+n))$ time for arbitrary graphs, where $n$ and $\bar{m}$ are the number of vertices and edges of the complement of the given graph.
翻译:Jones 等人(2015年) 引入了美元为美元代表的图表的概念 。 美元为美元代表的图表, 其中美元代表的字数大于$1, 2 ⁇ 美元, 与 22\cdds2 美元不同。 Kitaev(2015年) 显示, 如果美元代表的图表长度至少为3, 那么每个图表都是美元代表的。 这表明, 在 $代表的图表理论中, 仅有两个非三角类 : 11 美元代表的图表, 与 字代表的图表相对应, 与 22\cdddds2 相异 。 本研究涉及 12\cdddddal2 的数值。 Jones 等人(2015年) 提供了以禁止引演的子图表示 12 显示的可展示的树, Chen和 Kitaev(2022) 显示一个禁止引演算的子类的亚表 。 本文显示, 双向的数值显示的是, 当它是一个间隔限制的直径的直径直径直径直径直径的直径直径直径直径直径直径。 的直径直径直径直径直径直径直径, 。 。 我们的直方的直方的直方的直方的直方的直方的直方的直方的直径直径直方的直方的直方的直方的直方的直方的直方图显示一个直径方圖表显示为最深方。