We advance the state-of-the-art in unsupervised abstractive dialogue summarization by utilizing multi-sentence compression graphs. Starting from well-founded assumptions about word graphs, we present simple but reliable path-reranking and topic segmentation schemes. Robustness of our method is demonstrated on datasets across multiple domains, including meetings, interviews, movie scripts, and day-to-day conversations. We also identify possible avenues to augment our heuristic-based system with deep learning. We open-source our code, to provide a strong, reproducible baseline for future research into unsupervised dialogue summarization.
翻译:在未经监督的抽象对话中,我们通过使用多重感官压缩图表来推进最先进的抽象对话总结。我们从对文字图表的有充分依据的假设出发,提出简单而可靠的路径排序和主题分类方案。我们的方法在包括会议、访谈、电影脚本和日常对话在内的多个领域的数据集上表现得非常有力。我们还找出可能的途径,通过深层次的学习来扩大我们基于黑奴主义的系统。我们开源于我们的代码,为未来对未经监督的对话汇总的研究提供一个强大、可复制的基线。