We derive improved regression and classification rates for support vector machines using Gaussian kernels under the assumption that the data has some low-dimensional intrinsic structure that is described by the box-counting dimension. Under some standard regularity assumptions for regression and classification we prove learning rates, in which the dimension of the ambient space is replaced by the box-counting dimension of the support of the data generating distribution. In the regression case our rates are in some cases minimax optimal up to logarithmic factors, whereas in the classification case our rates are minimax optimal up to logarithmic factors in a certain range of our assumptions and otherwise of the form of the best known rates. Furthermore, we show that a training validation approach for choosing the hyperparameters of an SVM in a data dependent way achieves the same rates adaptively, that is without any knowledge on the data generating distribution.


翻译:使用高斯内核对支持矢量机器进行改进的回归率和分类率,其假设是数据具有由箱式计数维度描述的低维内在结构。根据某些标准的回归和分类常规假设,我们证明学习率,其中环境空间的维度被支持数据生成分布的箱式计数维度所取代。在回归案例中,我们的比率在某些情况下小于对数系数,而在分类中,我们的比率最优于对数系数,在一定范围的假设中达到对数系数的最小最大值,而在其他情况下,则是已知最佳率的形式。此外,我们表明,以数据依赖的方式选择SVM超参数的培训验证方法以适应性的方式达到同一比率,在数据生成分布方面没有任何知识。

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
41+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
44+阅读 · 2019年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员