This work introduces the Grassmannian Diffusion Maps, a novel nonlinear dimensionality reduction technique that defines the affinity between points through their representation as low-dimensional subspaces corresponding to points on the Grassmann manifold. The method is designed for applications, such as image recognition and data-based classification of high-dimensional data that can be compactly represented in a lower dimensional subspace. The GDMaps is composed of two stages. The first is a pointwise linear dimensionality reduction wherein each high-dimensional object is mapped onto the Grassmann. The second stage is a multi-point nonlinear kernel-based dimension reduction using Diffusion maps to identify the subspace structure of the points on the Grassmann manifold. To this aim, an appropriate Grassmannian kernel is used to construct the transition matrix of a random walk on a graph connecting points on the Grassmann manifold. Spectral analysis of the transition matrix yields low-dimensional Grassmannian diffusion coordinates embedding the data into a low-dimensional reproducing kernel Hilbert space. Further, a novel data classification/recognition technique is developed based on the construction of an overcomplete dictionary of reduced dimension whose atoms are given by the Grassmannian diffusion coordinates. Three examples are considered. First, a "toy" example shows that the GDMaps can identify an appropriate parametrization of structured points on the unit sphere. The second example demonstrates the ability of the GDMaps to reveal the intrinsic subspace structure of high-dimensional random field data. In the last example, a face recognition problem is solved considering face images subject to varying illumination conditions, changes in face expressions, and occurrence of occlusions.


翻译:这项工作引入了 Grassmannian Difulation Maps, 这是一种新型的非线性非维度减少技术, 将各点之间的亲近性定义为与 Grassmann 方块相匹配的低维次空间。 该方法的设计用于应用, 如图像识别和高维数据的基于数据分类, 可以在低维次空间中缩放。 GDmaps 由两个阶段组成。 第一阶段是点性线性线性维度减少, 将每个高维对象映射到格拉斯曼 方块上。 第二阶段是多点非线性内核的维度减少。 第二阶段是使用 Difmunical 方块图解析图解的多点非线性内核次空间次空间缩小。 为此, 适当的Grassmann 内层数据分类和基于Grassmann 方块表层结构结构结构的缩略图 显示GDralminal droup 的缩略图的缩略图, 其图解图解的缩略图在GDFral 的缩略图层中, 演示图的缩略图的缩略图的缩略图在GDrop 的缩缩略图中, 的缩略图中, 的缩略图的缩图在G。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
t-SNE:最好的降维方法之一
人工智能前沿讲习班
26+阅读 · 2019年2月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
Super-Resolution on the Two-Dimensional Unit Sphere
Arxiv
0+阅读 · 2021年7月23日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
t-SNE:最好的降维方法之一
人工智能前沿讲习班
26+阅读 · 2019年2月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
Top
微信扫码咨询专知VIP会员