Medical image segmentation is a fundamental and critical step in many clinical approaches. Semi-supervised learning has been widely applied to medical image segmentation tasks since it alleviates the heavy burden of acquiring expert-examined annotations and takes the advantage of unlabeled data which is much easier to acquire. Although consistency learning has been proven to be an effective approach by enforcing an invariance of predictions under different distributions, existing approaches cannot make full use of region-level shape constraint and boundary-level distance information from unlabeled data. In this paper, we propose a novel uncertainty-guided mutual consistency learning framework to effectively exploit unlabeled data by integrating intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information. The framework is guided by the estimated segmentation uncertainty of models to select out relatively certain predictions for consistency learning, so as to effectively exploit more reliable information from unlabeled data. We extensively validate our proposed method on two publicly available benchmark datasets: Left Atrium Segmentation (LA) dataset and Brain Tumor Segmentation (BraTS) dataset. Experimental results demonstrate that our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
翻译:医疗图象分解是许多临床方法的一个基本和关键步骤。半监督的学习被广泛应用于医疗图象分解任务,因为它减轻了获取专家检查说明的沉重负担,并且利用了更容易获得的未贴标签数据。虽然一致性学习已证明是一种有效的方法,通过在不同分布中执行不同预测的变异性,可以证明一致性学习是一种有效的方法,但现有方法无法充分利用区域一级的形状限制和来自未贴标签数据的边界距离信息。在本文件中,我们提出了一个新的、以不确定性为指南的相互一致性学习框架,以便有效地利用未贴标签的数据。我们广泛验证了我们关于两个公开提供的基准数据集的拟议方法:从更新的预测中学习内部一致性,从任务层次的正规化和跨任务一致性学习,以利用几何形状信息。框架以估计的分解性不确定性为指导,选择相对可靠的一致性学习预测,以便有效利用从未贴标签数据中获取的更可靠的信息。我们广泛验证了我们关于两个公开提供的基准数据集的拟议方法:将Atium分解数据分解(LA)数据集和脑图象-透析方法,以现有数据分解利用现有数据分解方法取得未升级的数据结果。