Facial Expression Recognition (FER) in the wild is extremely challenging due to occlusions, variant head poses, face deformation and motion blur under unconstrained conditions. Although substantial progresses have been made in automatic FER in the past few decades, previous studies were mainly designed for lab-controlled FER. Real-world occlusions, variant head poses and other issues definitely increase the difficulty of FER on account of these information-deficient regions and complex backgrounds. Different from previous pure CNNs based methods, we argue that it is feasible and practical to translate facial images into sequences of visual words and perform expression recognition from a global perspective. Therefore, we propose the Visual Transformers with Feature Fusion (VTFF) to tackle FER in the wild by two main steps. First, we propose the attentional selective fusion (ASF) for leveraging two kinds of feature maps generated by two-branch CNNs. The ASF captures discriminative information by fusing multiple features with the global-local attention. The fused feature maps are then flattened and projected into sequences of visual words. Second, inspired by the success of Transformers in natural language processing, we propose to model relationships between these visual words with the global self-attention. The proposed method is evaluated on three public in-the-wild facial expression datasets (RAF-DB, FERPlus and AffectNet). Under the same settings, extensive experiments demonstrate that our method shows superior performance over other methods, setting new state of the art on RAF-DB with 88.14%, FERPlus with 88.81% and AffectNet with 61.85%. The cross-dataset evaluation on CK+ shows the promising generalization capability of the proposed method.
翻译:野外的偏差表达度识别(FER)非常困难, 原因有二: 与以前纯净CNN使用的方法不同, 我们争辩说, 将面部图像转换成视觉文字序列, 从全球角度进行表达识别是可行和切合实际的。 因此, 我们建议具有功能变异的视觉变异器(VTFF) 以两个主要步骤在野外处理 FER。 首先, 我们提议有选择性的聚合(ASF), 以利用由两处CNN制作的两种功能图。 ASF 利用基于信息失密区域和复杂背景的通用图解。 与以前纯净CNN使用的方法不同, 我们争辩说, 将面部图像转换成视觉文字序列, 从全球角度进行表达。 因此, 我们建议具有功能变异功能变异的视觉变变器(VTFF), 以两种主要步骤解决野外变异的FERF。