项目名称: 基于粒子滤波的航空发动机气路部件突变故障诊断方法研究
项目编号: No.51276087
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 能源与动力工程
项目作者: 黄金泉
作者单位: 南京航空航天大学
项目金额: 80万元
中文摘要: 针对航空发动机气路部件突变故障问题,首次提出一种基于粒子滤波的突变故障诊断方法。突变故障发生和发展迅速、故障模型未知,发动机非线性模型的精度和实时性是粒子滤波准确性和实时性的关键因素,因而蕴涵着一些新的建模和诊断新问题。本项目旨在探索的三个核心问题包括:(1)航空发动机非线性模型自适应修正;(2)基于粒子滤波的航空发动机气路突变故障估计和诊断方法;(3)航空发动机气路突变故障诊断仿真分析和可行性验证。试图通过本项目的研究,不仅探究发动机气路突变故障建模机理和粒子滤波改进方法,解决故障诊断的实时性问题,而且探索提高发动机非线性模型的精度和实时性的新方法,揭示模型精度、滤波精度和诊断精度之间的影响机理,以期为航空发动机气路部件突变故障的诊断提供相关理论依据和应用基础。
中文关键词: 航空发动机;气路分析;突变故障诊断;粒子滤波;自适应实时部件级模型
英文摘要: Aim at the abrupt fault problem of aero-engine gas-path components, the method of abrupt fault diagnostics based on particle filter is proposed. Abrupt faults occur and develop rapidly, and the fault model is unknown. The accuracy and real-time of nonlinear model are the key factors to these of particle filter. Therefore, these imply new problems of modeling and diagnostics. The project focuses on the following three key problems: (1) Adaptive compensation of aero-engine nonlinear model, (2) Abrupt fault estimation and diagnostics for gas-path components of aero-engine, (3) Simulation analysis and feasibility validation to abrupt fault diagnostics. Attempt to the researches on the project, modeling mechanism for abrupt fault diagnostics and improved particle filter are studied to deal with the problem of real-time fault diagnostics; the new way to improve the accuracy and real-time of nonlinear model is researched; the accuracy influent mechanism between the model, filter and diagnostics is explored, which will provide the theory and application foundations of abrupt fault diagnostics for gas-path components of aero-engine.
英文关键词: Aircraft engine;gas-path analysis;abrupt fault diagnostics;particle filters;adaptive real-time component-level model