This paper presents a thorough evaluation of the existing methods that accelerate Lloyd's algorithm for fast k-means clustering. To do so, we analyze the pruning mechanisms of existing methods, and summarize their common pipeline into a unified evaluation framework UniK. UniK embraces a class of well-known methods and enables a fine-grained performance breakdown. Within UniK, we thoroughly evaluate the pros and cons of existing methods using multiple performance metrics on a number of datasets. Furthermore, we derive an optimized algorithm over UniK, which effectively hybridizes multiple existing methods for more aggressive pruning. To take this further, we investigate whether the most efficient method for a given clustering task can be automatically selected by machine learning, to benefit practitioners and researchers.


翻译:本文对加快劳埃德快速K- means群集算法的现有方法进行了透彻的评估。 为此,我们分析了现有方法的裁剪机制,并将其共同管道归纳成一个统一的评价框架UniK。 UniK采用一类众所周知的方法,并能够细化性能分解。在UniK中,我们用多个性能指标对若干数据集进行彻底评估现有方法的利弊。此外,我们从UniK中获得了一种优化的算法,它有效地将多种现有方法混合起来,以进行更具侵略性的裁剪。为了进一步,我们调查是否可以通过机器学习自动选择一个特定集任务的最有效方法,使实践者和研究人员受益。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
110+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员