Several demographic and health indicators, including the total fertility rate (TFR) and modern contraceptive use rate (mCPR), evolve similarly over time, characterized by a transition between stable states. Existing approaches for estimation or projection of transitions in multiple populations have successfully used parametric functions to capture the relation between the rate of change of an indicator and its level. However, incorrect parametric forms may result in bias or incorrect coverage in long-term projections. We propose a new class of models to capture demographic transitions in multiple populations. Our proposal, the B-spline Transition Model (BTM), models the relationship between the rate of change of an indicator and its level using B-splines, allowing for data-adaptive estimation of transition functions. Bayesian hierarchical models are used to share information on the transition function between populations. We apply the BTM to estimate and project country-level TFR and mCPR and compare the results against those from extant parametric models. For TFR, BTM projections have generally lower error than the comparison model. For mCPR, while results are comparable between BTM and a parametric approach, the B-spline model generally improves out-of-sample predictions. The case studies suggest that the BTM may be considered for demographic applications
翻译:暂无翻译