We present a new power method to obtain solutions of eigenvalue problems. The method can determine not only the dominant or lowest eigenvalues but also all eigenvalues without the need for a deflation procedure. The method uses a functional of an operator (or a matrix) to select or filter an eigenvalue. The method can freely select a solution by varying a parameter associated to an estimate of the eigenvalue. The convergence of the method is highly dependent on how closely the parameter to the eigenvalues. In this paper, numerical results of the method are shown to be in excellent agreement with the analytical ones.
翻译:暂无翻译