We study the problem of deciding the winner of reachability switching games for zero-, one-, and two-player variants. Switching games provide a deterministic analogue of stochastic games. We show that the zero-player case is NL-hard, the one-player case is NP-complete, and that the two-player case is PSPACE-hard and in EXPTIME. For the zero-player case, we also show P-hardness for a succinctly-represented model that maintains the upper bound of NP intersection coNP. For the one- and two-player cases, our results hold in both the natural, explicit model and succinctly-represented model. Our results show that the switching variant of a game is harder in complexity-theoretic terms than the corresponding stochastic version.
翻译:我们研究了决定可达性转换游戏胜出者为零、一和二玩家变异游戏的赢家的问题。 切换游戏提供了随机游戏的决定性类比。 我们显示零玩家是NL-hard, 单玩家是NP- 完成的, 双玩家是PSPACE- hard 和 EXPTIME 。 对于零玩家, 我们还展示了P- 硬性, 用于维持NP交叉式 CoNP 上限的简明代表模型。 对于一玩家和二玩家的游戏, 我们的结果在自然的、明确的模型和简洁的代表模式中都有。 我们的结果显示, 游戏的转换变量在复杂理论术语上比相应的随机版本要难。