The size $b$ of the smallest bidirectional macro scheme, which is arguably the most general copy-paste scheme to generate a given sequence, is considered to be the strictest reachable measure of repetitiveness. It is strictly lower-bounded by measures like $\gamma$ and $\delta$, which are known or believed to be unreachable and to capture the entropy of repetitiveness. In this paper we study another sequence generation mechanism, namely compositions of a morphism. We show that these form another plausible mechanism to characterize repetitive sequences and define NU-systems, which combine such a mechanism with macro schemes. We show that the size $\nu \leq b$ of the smallest NU-system is reachable and can be $o(\delta)$ for some string families, thereby implying that the limit of compressibility of repetitive sequences can be even smaller than previously thought. We also derive several other results characterizing $\nu$.
翻译:最小双向宏观方案的大小为$b$, 可以说是生成给定序列的最普通的复制- 粘附方案, 被认为是最严格可达到的重复性度量。 它严格地较低, 由 $\ gamma$ 和 $\delta$ 等措施限制, 这些措施已知或被认为无法达到, 并捕捉重复性的酶。 在本文中, 我们研究另一个序列生成机制, 即形态的构成。 我们显示这些是另一个可行的机制, 用来描述重复序列和定义NU- 系统, 将这种机制与宏观方案相结合。 我们显示最小的NU- 系统 $\ nu\ leq b$ 的大小是可以达到的, 对于某些字符串家族, 它可以是$(\ delta) $, 从而意味着重复序列的可压缩性限度可能比以前想象的要小。 我们还得出了其他几个结果, 以$\ nu$ 为特性 。