The recently discovered monad, Tx = Selection (x -> r) -> r, provides an elegant way to finnd optimal strategies in sequential games. During this thesis, a library was developed which provides a set of useful functions using the selection monad to compute optimal games and AIs for sequential games. In order to explore the selection monads ability to support these AI implementations, three example case studies were developed using Haskell: The two-player game Connect Four, a Sudoku solver and a simplified version of Chess. These case studies show how to elegantly implement a game AI. Furthermore, a performance analysis of these case studies was done, identifying the major points where performance can be increased.
翻译:最近发现的月球, Tx = 选择 (x - > r) - > r, 提供了一个优雅的方法, 在连续游戏中找到最佳策略。 在此论文中, 开发了一个图书馆, 提供一套有用的功能, 使用选择的月球来计算最佳游戏和连续游戏的 AI 。 为了探索选择的月球支持这些AI 执行的能力, 利用哈斯凯尔( Haskell) 开发了三个案例: 双玩游戏连接四号, 数独解答器和简化版的棋类。 这些案例研究显示如何优雅地执行游戏 AI 。 此外, 对这些案例研究进行了绩效分析, 确定了可以提高业绩的要点 。