Recent advancements in pre-trained large language models (LLMs) have significantly influenced various domains. Adapting these models for specific tasks often involves fine-tuning (FT) with private, domain-specific data. However, privacy concerns keep this data undisclosed, and the computational demands for deploying LLMs pose challenges for resource-limited data holders. This has sparked interest in split learning (SL), a Model-as-a-Service (MaaS) paradigm that divides LLMs into smaller segments for distributed training and deployment, transmitting only intermediate activations instead of raw data. SL has garnered substantial interest in both industry and academia as it aims to balance user data privacy, model ownership, and resource challenges in the private fine-tuning of LLMs. Despite its privacy claims, this paper reveals significant vulnerabilities arising from the combination of SL and LLM-FT: the Not-too-far property of fine-tuning and the auto-regressive nature of LLMs. Exploiting these vulnerabilities, we propose Bidirectional Semi-white-box Reconstruction (BiSR), the first data reconstruction attack (DRA) designed to target both the forward and backward propagation processes of SL. BiSR utilizes pre-trained weights as prior knowledge, combining a learning-based attack with a bidirectional optimization-based approach for highly effective data reconstruction. Additionally, it incorporates a Noise-adaptive Mixture of Experts (NaMoE) model to enhance reconstruction performance under perturbation. We conducted systematic experiments on various mainstream LLMs and different setups, empirically demonstrating BiSR's state-of-the-art performance. Furthermore, we thoroughly examined three representative defense mechanisms, showcasing our method's capability to reconstruct private data even in the presence of these defenses.
翻译:暂无翻译