Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.


翻译:排序和排序监督是一种基于订单限制来培训神经网络端对端的方法。 也就是说, 一组样本的地面真实顺序是已知的, 而其绝对值仍然不受监督。 为此, 我们建议通过放松其配对条件互换操作, 进行不同的分类网络。 为了解决梯度消失和大量层产生广泛模糊的问题, 我们建议为有中等梯度的区域绘制启动程序。 我们考虑奇异的和比特式的分类网络, 这些网络比分类操作中现有的松散程度要强。 我们显示, 比特式分类网络可以实现对高达1024个元素的大型输入数据集的稳定培训 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
专知会员服务
60+阅读 · 2020年3月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
必读!2018最具突破性计算机视觉论文Top 10
新智元
8+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
必读!2018最具突破性计算机视觉论文Top 10
新智元
8+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
4+阅读 · 2020年10月18日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
4+阅读 · 2017年1月2日
Top
微信扫码咨询专知VIP会员