Instance-level Image Retrieval (IIR), or simply Instance Retrieval, deals with the problem of finding all the images within an dataset that contain a query instance (e.g. an object). This paper makes the first attempt that tackles this problem using instance-discrimination based contrastive learning (CL). While CL has shown impressive performance for many computer vision tasks, the similar success has never been found in the field of IIR. In this work, we approach this problem by exploring the capability of deriving discriminative representations from pre-trained and fine-tuned CL models. To begin with, we investigate the efficacy of transfer learning in IIR, by comparing off-the-shelf features learned by a pre-trained deep neural network (DNN) classifier with features learned by a CL model. The findings inspired us to propose a new training strategy that optimizes CL towards learning IIR-oriented features, by using an Average Precision (AP) loss together with a fine-tuning method to learn contrastive feature representations that are tailored to IIR. Our empirical evaluation demonstrates significant performance enhancement over the off-the-shelf features learned from a pre-trained DNN classifier on the challenging Oxford and Paris datasets.


翻译:平时图像检索系统(IIR),即简单的平时图像检索检索系统(Rit Retreal),处理在包含查询实例(例如一个对象)的数据集中查找所有图像的问题。本文件首次尝试使用基于实例的差别化学习(CL)来解决这一问题。虽然CL为许多计算机的视觉任务展示了令人印象深刻的业绩,但在IIR领域却从未发现类似的成功。在这项工作中,我们通过探索从预先培训和微调的CL模型中产生歧视性表现的能力来处理这一问题。首先,我们通过比较预先培训的深神经网络(DNNN)分类所学的非现成特征和CL模型所学的特征来调查IR中转移学习的所有图像的功效。研究结果启发我们提出一项新的培训战略,通过使用平均精度损失和微调方法来学习适合IR的对比特征表现。我们的经验评价表明,在从具有挑战性的OFCSARG和前的DNFDG模型中学习的离世特征方面,显著提高了业绩。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员