Automatic rib labeling and anatomical centerline extraction are common prerequisites for various clinical applications. Prior studies either use in-house datasets that are inaccessible to communities, or focus on rib segmentation that neglects the clinical significance of rib labeling. To address these issues, we extend our prior dataset (RibSeg) on the binary rib segmentation task to a comprehensive benchmark, named RibSeg v2, with 660 CT scans (15,466 individual ribs in total) and annotations manually inspected by experts for rib labeling and anatomical centerline extraction. Based on the RibSeg v2, we develop a pipeline including deep learning-based methods for rib labeling, and a skeletonization-based method for centerline extraction. To improve computational efficiency, we propose a sparse point cloud representation of CT scans and compare it with standard dense voxel grids. Moreover, we design and analyze evaluation metrics to address the key challenges of each task. Our dataset, code, and model are available online to facilitate open research at https://github.com/M3DV/RibSeg
翻译:各种临床应用的共同先决条件是自动肋骨标签和解剖中线提取; 以前的研究要么使用社区无法进入的内部数据集,要么侧重于忽视肋骨标签临床重要性的肋骨分割法。 为了解决这些问题,我们将我们以前关于二元肋骨分割法的数据集(RibSeg)扩展至一个综合基准,名为RibSeg v2, 共660 CT扫描(共15 466个肋骨)和专家手工检查的描述,用于肋骨标签和解剖中线提取。根据RibSeg v2, 我们开发了一条管道,包括基于深度学习的肋骨标签方法,以及基于骨架提取法的骨架化方法。为了提高计算效率,我们提出了CT扫描的稀薄点云表,并将其与标准密度高的 voxel 网格进行比较。 此外,我们设计和分析评估指标,以应对每项任务的关键挑战。 我们的数据集、代码和模型可以在线查阅,以便利在https://github.com/M3DVib/Sibi进行开放式研究。