In a randomized study, leveraging covariates related to the outcome (e.g. disease status) may produce less variable estimates of the effect of exposure. For contagion processes operating on a contact network, transmission can only occur through ties that connect affected and unaffected individuals; the outcome of such a process is known to depend intimately on the structure of the network. In this paper, we investigate the use of contact network features as efficiency covariates in exposure effect estimation. Using augmented generalized estimating equations (GEE), we estimate how gains in efficiency depend on the network structure and spread of the contagious agent or behavior. We apply this approach to simulated randomized trials using a stochastic compartmental contagion model on a collection of model-based contact networks and compare the bias, power, and variance of the estimated exposure effects using an assortment of network covariate adjustment strategies. We also demonstrate the use of network-augmented GEEs on a clustered randomized trial evaluating the effects of wastewater monitoring on COVID-19 cases in residential buildings at the the University of California San Diego.
翻译:在随机研究中,与接触结果有关的杠杆共变作用(如疾病状况)可能会产生较少变化的接触效应估计值。对于在接触网络上运作的传染过程,传播只能通过连接受影响和不受影响个人的联系才能发生;这种过程的结果众所周知密切取决于网络的结构。在本文中,我们调查接触网络特征作为接触效应估计效率共变的使用情况。我们利用扩大的通用估计方程式,估计效率的提高如何取决于网络结构以及传染剂或行为的扩散。我们采用这种方法模拟随机试验,在收集基于模型的接触网络时采用随机分包式传染模型,并比较利用网络共变式调整战略对估计接触效应的偏差、力量和差异。我们还在评估加利福尼亚圣地亚哥大学住宅建筑废水监测对COVID-19案件的影响的集群随机试验中,使用了网络放大的GEE。我们还演示了对网络随机试验的利用,评估废水监测对加利福尼亚圣地亚哥大学住宅建筑COVID-19案件的影响。