Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other areas. To ensure safety, cobots are subject to kinematic limits that result in low signal-to-noise ratios (SNR) for velocity, acceleration, and force-torque data. This renders existing inertial parameter identification algorithms prohibitively slow and inaccurate. Motivated by the desire for faster model acquisition, we investigate the use of an approximation of rigid body dynamics to improve the SNR. Additionally, we introduce a mass discretization method that can make use of shape information to quickly identify plausible inertial parameters for a manipulated object. We present extensive simulation studies and real-world experiments demonstrating that our approach complements existing inertial parameter identification methods by specifically targeting the typical cobot operating regime.
翻译:协作机器人(cobots)是设计来安全地与人类中心环境中的人一起工作的机器。为能够快速推断被操纵物体的惯性参数的cobot提供能够迅速推断被操纵物体的惯性参数的能力,将提高它们的灵活性,并能够在制造和其他领域更多地使用。为了确保安全,cobots受到动能限制,从而导致速度、加速率和强制托克数据的信号-噪音比率(SNR)较低。这使得现有的惯性参数识别算法过于缓慢和不准确。我们受快速获得模型的愿望的驱使,我们调查使用僵硬身体动态近似来改进SNR。此外,我们引入了大规模离散化方法,可以利用形状信息迅速确定被操纵物体的貌似惯性参数。我们提出了广泛的模拟研究和现实世界实验,表明我们的方法通过具体针对典型的cobot操作系统来补充现有的惯性参数识别方法。