High-dimensional regression and regression with a left-censored response are each well-studied topics. In spite of this, few methods have been proposed which deal with both of these complications simultaneously. The Tobit model -- long the standard method for censored regression in economics -- has not been adapted for high-dimensional regression at all. To fill this gap and bring up-to-date techniques from high-dimensional statistics to the field of high-dimensional left-censored regression, we propose several penalized Tobit models. We develop a fast algorithm which combines quadratic minimization with coordinate descent to compute the penalized Tobit solution path. Theoretically, we analyze the Tobit lasso and Tobit with a folded concave penalty, bounding the $\ell_2$ estimation loss for the former and proving that a local linear approximation estimator for the latter possesses the strong oracle property. Through an extensive simulation study, we find that our penalized Tobit models provide more accurate predictions and parameter estimates than other methods. We use a penalized Tobit model to analyze high-dimensional left-censored HIV viral load data from the AIDS Clinical Trials Group and identify potential drug resistance mutations in the HIV genome. Appendices contain intermediate theoretical results and technical proofs.


翻译:高维回归和回归,加上左上层反应,都是研究周密的题目。尽管如此,很少提出同时处理这两种并发症的方法。 Tobit 模型 -- -- 长期的经济学审查回归的标准方法 -- -- 根本没有适应高维回归。为了填补这一空白,将高维统计的最新技术从高维的左下层回归中引入到高维左下层回归领域,我们提出了几种受罚的 Tobit 模型。我们开发了一种快速算法,将二次最小化最小化与协调下降结合起来,以计算受罚的 Tobit 溶液路径。理论上,我们分析了Tobit laso 和 Tobit 与折叠的折叠式折叠式折叠式折叠式折曲法,将前者的 $ell_2美元估算损失捆绑起来,并证明后者的本地直线性近度估计仪具有强或极强的属性。我们通过广泛的模拟研究发现,我们受罚的 Tobit 模型提供了比其他方法更准确的预测和参数估计。我们使用一种受罚的比特模型来分析高度左位的左位偏偏移病毒病毒病毒病毒病毒的模型,我们使用了一种分析高位模型,从艾滋病临床试验组的模拟试验和病毒的理论测试结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员