As the technological advancement and capabilities of automated systems have increased drastically, the usage of unmanned aerial vehicles for performing human-dependent tasks without human indulgence has also spiked. Since unmanned aerial vehicles are heavily dependent on Information and Communication Technology, they are highly prone to cyber-attacks. With time more advanced and new attacks are being developed and employed. However, the current Intrusion detection system lacks detection and classification of new and unknown attacks. Therefore, for having an autonomous and reliable operation of unmanned aerial vehicles, more robust and automated cyber detection and protection schemes are needed. To address this, we have proposed an autonomous self-incremental learning architecture, capable of detecting known and unknown cyber-attacks on its own without any human interference. In our approach, we have combined signature-based detection along with anomaly detection in such a way that the signature-based detector autonomously updates its attack classes with the help of an anomaly detector. To achieve this, we have implemented an incremental learning approach, updating our model to incorporate new classes without forgetting the old ones. To validate the applicability and effectiveness of our proposed architecture, we have implemented it in a trial scenario and then compared it with the traditional offline learning approach. Moreover, our anomaly-based detector has achieved a 100% detection rate for attacks.


翻译:随着技术进步和自动化系统的能力的大幅提高,无人驾驶飞行器在没有人类允许的情况下执行人类依赖的任务的使用也急剧增加;由于无人驾驶飞行器高度依赖信息和通信技术,因此它们极易受到网络攻击;随着时间的更先进和新的攻击正在开发和使用;然而,目前的入侵探测系统缺乏对新的和未知的攻击的探测和分类;因此,为了对无人驾驶飞行器进行自主和可靠的操作,需要更强有力和自动化的网络探测和保护计划;为了解决这个问题,我们提议了一个自主的自我入门学习结构,有能力在不受到人类干扰的情况下自行探测已知和未知的网络攻击;在我们的方法中,我们把基于签字的探测与异常探测结合起来,使基于签字的探测器在异常探测器的帮助下自动更新其攻击班级;为了实现这一目标,我们采用了一种渐进式学习方法,更新我们的模型,以纳入新的课程,同时不忘旧的单元;为了证实我们提议的结构的适用性和有效性,我们已在一个试验情景中实施了这一系统,然后将它与基于传统异常现象的探测率进行比较。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2022年2月21日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员