Machine Learning (ML) techniques are increasingly adopted to tackle ever-evolving high-profile network attacks, including DDoS, botnet, and ransomware, due to their unique ability to extract complex patterns hidden in data streams. These approaches are however routinely validated with data collected in the same environment, and their performance degrades when deployed in different network topologies and/or applied on previously unseen traffic, as we uncover. This suggests malicious/benign behaviors are largely learned superficially and ML-based Network Intrusion Detection System (NIDS) need revisiting, to be effective in practice. In this paper we dive into the mechanics of large-scale network attacks, with a view to understanding how to use ML for Network Intrusion Detection (NID) in a principled way. We reveal that, although cyberattacks vary significantly in terms of payloads, vectors and targets, their early stages, which are critical to successful attack outcomes, share many similarities and exhibit important temporal correlations. Therefore, we treat NID as a time-sensitive task and propose NetSentry, perhaps the first of its kind NIDS that builds on Bidirectional Asymmetric LSTM (Bi-ALSTM), an original ensemble of sequential neural models, to detect network threats before they spread. We cross-evaluate NetSentry using two practical datasets, training on one and testing on the other, and demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce. Further, we put forward a novel data augmentation technique that boosts the generalization abilities of a broad range of supervised deep learning algorithms, leading to average F1 score gains above 35%.
翻译:日益采用机器学习(ML)技术来应对不断演变的高调网络袭击,包括DDoS、botnet和赎金软件,因为这些技术具有在数据流中提取隐藏的复杂模式的独特能力。然而,这些方法通过在同一环境中收集的数据得到例行验证,而当我们发现,在不同的网络地形和(或)先前不为人知的交通中部署时,其性能会下降。这表明恶意/恶意行为在很大程度上是表面学的,以ML为基础的网络入侵探测系统(NIDS)需要重新审视,才能有效。在本文中,我们潜入大规模网络袭击的机械,以便了解如何使用ML进行网络入侵探测(NID),我们发现,虽然网络攻击在有效攻击结果的关键方面有很大差异,有许多相似之处,并显示出重要的时间相关性。因此,我们把NID视为一种对时间敏感的任务,并提议NetSentry,或许是其最高级的IDS, 其一级NIDS,以有原则的方式,将网络入侵(NIDS)用于网络的MBIALS)探测系统测算测算结果。我们测算的三年级系统测算系统测算系统测算系统测算系统。