Machine Learning (ML) techniques are increasingly adopted to tackle ever-evolving high-profile network attacks, including DDoS, botnet, and ransomware, due to their unique ability to extract complex patterns hidden in data streams. These approaches are however routinely validated with data collected in the same environment, and their performance degrades when deployed in different network topologies and/or applied on previously unseen traffic, as we uncover. This suggests malicious/benign behaviors are largely learned superficially and ML-based Network Intrusion Detection System (NIDS) need revisiting, to be effective in practice. In this paper we dive into the mechanics of large-scale network attacks, with a view to understanding how to use ML for Network Intrusion Detection (NID) in a principled way. We reveal that, although cyberattacks vary significantly in terms of payloads, vectors and targets, their early stages, which are critical to successful attack outcomes, share many similarities and exhibit important temporal correlations. Therefore, we treat NID as a time-sensitive task and propose NetSentry, perhaps the first of its kind NIDS that builds on Bidirectional Asymmetric LSTM (Bi-ALSTM), an original ensemble of sequential neural models, to detect network threats before they spread. We cross-evaluate NetSentry using two practical datasets, training on one and testing on the other, and demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce. Further, we put forward a novel data augmentation technique that boosts the generalization abilities of a broad range of supervised deep learning algorithms, leading to average F1 score gains above 35%.


翻译:日益采用机器学习(ML)技术来应对不断演变的高调网络袭击,包括DDoS、botnet和赎金软件,因为这些技术具有在数据流中提取隐藏的复杂模式的独特能力。然而,这些方法通过在同一环境中收集的数据得到例行验证,而当我们发现,在不同的网络地形和(或)先前不为人知的交通中部署时,其性能会下降。这表明恶意/恶意行为在很大程度上是表面学的,以ML为基础的网络入侵探测系统(NIDS)需要重新审视,才能有效。在本文中,我们潜入大规模网络袭击的机械,以便了解如何使用ML进行网络入侵探测(NID),我们发现,虽然网络攻击在有效攻击结果的关键方面有很大差异,有许多相似之处,并显示出重要的时间相关性。因此,我们把NID视为一种对时间敏感的任务,并提议NetSentry,或许是其最高级的IDS, 其一级NIDS,以有原则的方式,将网络入侵(NIDS)用于网络的MBIALS)探测系统测算测算结果。我们测算的三年级系统测算系统测算系统测算系统测算系统。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员